1.2b Linear difference equations

Monday, January 11, 2021 4:56 PM

Text book: An introduction is mathematical biology by Linda T.S. Milen
Suplement: Nonlinear dynamics and chins by Steven Strag to
Def. 1.1 A difference equation of order k has the form

$$f(x_{LSR}, y_{LSRN, 1, ..., X_{R}}, t) = 0, \quad t \in \mathbb{N} = \frac{2}{9}, j, l, ..., J$$

where $x_{L} \in \mathbb{R}$, and f much dopend on both x_{LSR} and x_{L}
Note: x_{L} are called the state variables
Eve. $f(x_{LSR}, x_{LSRN, 1, ..., X_{L}}, t) = \sin x_{LSR} + t x_{LSRN} +$

is called linear. Otherwise, nonlinear.
If a difference equation is linear and
$$b_{ij} = 0$$
 of $i \in N_{ij}$ than
it is konsequences. Otherwise, it is nonhamageneous.
 $t_{ij}(1) = x_{ij}(1) = at x_{ij} + b_{i}t^{i} x_{i,j} + dsint \frac{2}{3}$, $a, b \in R$
 $a_{ij}(1) = a_{ij}(1) = b_{ij}(1) = b_{ij}(1)$
 $homogeneous$
 $homogeneous$

Note 1.4 A solution to a difference equation is a function

$$x: N \rightarrow R$$
 that modes the difference equative trace
 $Ex_{i,i} X_{i,i,j} = a \times_{i}$, $a \in R$ (Support these are individuals in a
 $Struct with x_{0}$. (Product generator)
 $X_{i} = a \times_{0}$ Say $v_{0} = 1$
 $X_{2} = a^{0} \times_{0}$ $X = 1N \rightarrow R$ defined by $X_{2} = a^{0} \times_{0}$
 $x_{4} = a^{0} \times_{0}$ $X = iN \rightarrow R$ defined by $X_{4} = a^{0} \times_{0}$
 $x_{4} = a^{0} \times_{0}$ $Solves the difference equation $X_{4} = a^{0} \times_{0}$
 $X = N \times \{1, n, k\} = R$ that modes the difference equations true.
 $find = n = Support X(t) = (x_{i}(t), \dots, x_{n}(t))^{T}$ for the solution.$